ﬂ b FLE COP{ CR 90.016

July 1990
An Investigation Conducted by:
Joseph A. Landers

~ontract RepQr[Department of Civil Engineering

University of California, Berkeley

A SOFTWARE DEVELOPMENT
" SPECIFICATION FOR
NONLINEAR STRUCTURAL

\ ANALYSIS

ABSTRACT This report describes a programming environment for structural
engineering computations. Offering many advantages over the current state of
technology in this area, the software system discussed here is highly flexible and
portable. In addition to carrying out sophisticated calculations efficiently on
today's engineering workstations, the environment can also exploit the power of
- larger computers by linking tasks over a local area network. Furthermore, the
system is programmable and extensible, Finally, the software system may be in-
tegrated with existing programs such as finite element codes and mathematical

hbranes y
YRoQe N Gaatran

/ Ao
W P pTie

ELECTE
,71* 0CT.30.1960

NAVAL CIVIL ENGINEERING LABORATORY PORT HUENEME CALIFORNIA 93043

Approved for public release; distributien is unlimited.

90 10 29 018

AD-A228 427

S i R e T R TR AT
B Lt e et

o ® 0 T = &
oo 08 Sw L 2 0z- or -5 —=m = m - "PBZI0L'ELD "ON BOIBIED QS ‘SZ'Z$ $01id ‘sainseey PUE SIYBIOM 5O S3HUN 'S8T "1GNd OHN
?. T —_ jOw—_ raﬂ.g T} _. T m v dm.vl = — = SHN 905 “$3|QE) PAJIE18P 3J0UW PUE SUOISISAUOD 18X JYI0 JO4 ~(A[1O8X3) 962 = Ul |,
e 9 = o 8= =
&O - T (ze
w m = anvedway Bupoengns ainlesedwal
. HM = %% S5 8Y®) 6/5 Nayuaiyey do
= {3exe) IUNLVHIINIL
aimesaduoy (z& ppe aunjeseduwae o m = o~ W 19131 21GN0 9.0 spieh 2o gPA
do usyualyey USY) G/6 snisiog 9o mm = e st aqmo €00 199} 219™ H
@ = } sJ9u| :¥ % suojjeb w6
{308x8) IHNLYHIdWIL = = 1 S5y 660 suenb b
nv> spaeA 21GNd 1 S1930W 2GR e Lllu o i sy wo syuid u
Y 198} 21GN0 Ge s1a3au 21qno pCt |..m = © i s3] E7A)) sdna 5
fo suo||eB 9z'0 s103| 2 = = I o€ $30UN0 pIny 204
b suenb 90t 13y [|.m = uw st suoodsayqey dsqy .
d syud 1'z sioN i —= = W -] suoodseay ds)
zop saouno piny £0°0 siauplw w m mull < IWNTI0A
3WNTO0A - = = {a1000'2)
$u0) 3104s 't (6% 000'1) ssuuoy 1 = 3 sauuo} 60 Su0l Loys
q spunod bArA sweibopy 6 o I.m |] swesbo)y S0 spunod qal
20 $8oUN0 S£0°0 swesd [} —_— = 6 sweib 8z $30uUno 0
{4B1om) SSYIW 3 —82 = {wibiom) SSYIN
saJoe [-¥4 .NE 000°01) ssse303y ey - .Ill...m n“l ey $218109y ¥'0 sape
2w soiw asenbs vo $1813WO}Y 88nbs 2 > E = 2 $4939ui0]13 aienbs 9z s?|iw asenbs P
Nv> spaeA asenbs i sioj0w asenbs w s —= = v sio10w asenbs 80 spied asenbs zPh
NS saYyou) sJenbs 910 $3910W1IUO d.enbs cho :.ll'n" — © m:E PIOE T 8-”” 60°0 1394 aJenbs Nu
- = — 5 $1219WHUD e ¥ ou) 31enbs
vagv 3 TE & z 59 sauout ™
w sapw 90 s1219WoO[1y wy Ullnm = vanv
pA spaeA (M sJa19W w —_— = uy s1a13W01y 9l sapIw w
3 198} £t s1319W wo= - = ~ w ss3W 6'0 spieA PA
w sayoul $'0 $193PRUR wd W‘HH" - wd SIjawUR 0e 139) Y
ul sayoul 0’0 sJplawjjiw w g —= = wd SialawuUsd SC. sayou u)
HIONT1 = HIONT
8 —E =
{oquiAs putd oy Aq Aidain MOUY NOA USYM toquig B 2 joquig puij ol Aq Aldniniy MOU) NOA UM |oquidg
$SSANSISH J1RVIN WO SUOIBIOAUC BuIX0ddy W —= = $2INSEOW JLIIOW 01 SUOISIAUOY ajewnxoxddy
N = = o

|

SHOLDVA NOISHIANOD JTHLAW

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-018

Public reporting burden for this collection of information 1s ted to

ge1 hourperresponse. including the time for revi g 1nstr

h ting data

ts regarding this burden estimate or any other aspect of this

suggest
Surte 1204, Arington, VA 22202-4302 and fo the Office of Management and Budget, Paperwork Reduction

gathenng and maintaining the data needed, and completing and reviewing the coliection of § tion. Send
for red lhus burden, to Washington Headquarters Services, Directorate for Information and Reports, 1215 Jefierson Davis Highway,

Project (0704-0188), Washington, DC 20503,

2. REPORT DATE

July 1990

1. AGENCY USE ONLY (Leave blank)

3. REPORT TYPE AND DATES COVERED

Final; September 1987 thru October 1988

4, TITLE AND SUBTITLE

A SOFTWARE DEVELOPMENT SPECIFICATION FOR
NONLINEAR STRUCTURAL ANALYSIS

5. FUNDING NUMBERS

PE - YRO023.03.01.005
PR - RM33F60-A2-06-010

6. AUTHOR(S)

Joseph A. Landers

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSE(S}

Department of Civil Engineering

Division of Structural Engineering, Mechanics & Materials
University of California, Berkeley

Beikeley, CA 94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

CR-90.016

9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESSE(S)

Office of Naval Technology / Naval Civil Engineering

800 N. Quincy Street Laboratory

Arlington, VA 22217-5000 Port Hueneme, CA 93043-5003

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13, ABSTRACT (Maximum 200 words)

This report describes a programming environment for structural enginecring computations. Offering many
advantages over the current state of technology in this area, the software system discussed here is highly
flexible and portable. In addition to carrying out sophisticated calculations efficiently on today's engineer-
ing workstations, the environment can also exploit the power of larger computers by linking tasks overa local
area network. Furthermore, the system is programmable and extensible. Finally, the software system may
be integrated with existing programs such as finite clement codes and mathematical librarics.

14, SUBJECT TERMS

programming cnvironment, interpreter, virtual machine

15 NUMBER OF v*'AGES

Structural engineering, finite element analysis, software cngincering, software development, 18

16. PRICE CODE

AN AT A Ea

R .

Y

17. SECURITY CLASSIFICATION
OF REPORY

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION 20. LUIMITATION OF ABSTRACT 4
OF ABSTRACT
Unclassified UL

NSN 7540-01-280-5500

Prescribed by ANSI S1d, 23918 |
298-102

Standard Form 298 (Rov, 2-89)

TABLE OF CONTENTS

Page

Abstract 1

1 INTRODUCTION 1

2 HISTORICAL PERSPECTIVE .)

3 TERMINOLOGY ...ocvcrirerrirescossasescstsisisssssisisssssssnsasesssssassssesmsnsassssssessssssssssessassases 3

3.1 TIHEIPICIET coverreereorrcnscsisnssesisnssissinststssssesesssssasssestssnssssssssssssssssossoressssossssssassnssessssossssssassssssssasssosssaross 3

3.2 LaANZUARE DESIZI c.vevveerenerisiseonsosmesesmissssisssissarsissasassssassisssesssssssstsssssssnssssssosssssesestonssstsssssasssnsnsssasasossss 4

3.3 VIrUAL MACHIIE ...veereeriereeierieeereerceresresnesseseeseressssssstssssssoseossossossssassassessassssssessessassessassassnssssosssssessesnss 4

3.4 COMPULCT NCIWOIKS .1ievsrrersrserisesseresassestssessiseenesrisessssnesesassnssesnessssessssassessessssessonssnesassssssssassasessossonsnests 5

3.5 Dynamic BiNdINgGcecvevermsssisisensisensesisiesisesissonssissssssssssssssssssssssasssssses 5

4 SYSTEM OVERVIEWouivvrirernnnenrimersnsensssesssonsesssnsasssssessssssssessssosssssnsssssssssssmsssssssssssesssssssssassssssassssssasess 5

4.1 Virtual MACKINE ..cvirercivicirsisresisissenisseriessssisnssnsiosisiossosesssssssissssissnstssssesassssssssasssssssnsassassssasssssnssasssssenes 6

4.2 TIHEIPICIET ecrviserirursssisesssisissisesisisesesamsestsnsarsesesststsssstsssmsssssssssssssssssssssssestossssssossssssssesssensssssesssasssansasss 8

4.3 SHIUCHUTAL LIDTATIES .cuvevvrerererrsrrrersrarnisnssserssssesasasssssessssssssssssssnssessessssssssssasssssasssasessssssssessesesasassesssnses 10

4.3.1 GCOMEIIY 1irverrrenserensessssresssronsssessssisassosessessesssntsnssssessssessestssesssssssssresssrsssesssstsssnsssessessesssresasnss 11

4.3.2 PIOPEILY t1ivrviircsrisessassisostssssnsassessessessssesesosasstssssrssesssssosssssssessssssssstsssnsssssestssssssssossesssessansonss 11

4.3.3 BOUNGATY covvviireniiressesissinnssssnsossssissessersssssesssssssssssssesssssssssssnesssessssssssessssssnsssssssssssssssasssssorsonss 11

4.3.4 LOAAS «vcvererererierirenrrerennenssinesesssesessesessssesasessastrsassasssnsessssesstsssssensrsssserassesessssssestsasaressassnsesnes 12

4.3.5 ADALYSES 1eevvrerererenrennieirenssisesensosessssnssesssssssssessssasssssssssssssssossssssssssessesssesasnssassessaesssssanssssssasasses 12

4.3.6 RESUILS .cuvererrenerererenesssanannorsesessenssosassesssssossasas.crasssstsasnosssassssssssessssasssasossassassonsrasasassessssssssnass 12

4.4 ADPLICAtION LIDIATICS .vovvuirirrseniineresisivesesmsiesisninsississscsinsacossscsssisssssismsssssssscrsassssesasssssasassessssssossssases 12

5 EXAMPLES ..oooooeeevereenensssssesesessesssessssesssssssassesnsassessessasasatsiesssssssassssssssssassssssstossssossssatasssssessrarsrensstsnrasstssse 13

6 SUMMARYoverreerrrerenessssssesasersssssssssssassonsassssessssssssssetstssssssssasessssassssessssstsesest sesasssssasasssssesstassassossssssssasssne 14
7 ACKNOWLEDGMENTccoorrererrrresessersrssesesessestsssessassssssssssassorssnssossssessssossssssssessssssssesessssssssnssessonsstsssassasese 17 or a
8 REFERENCESoccccvtnterirenseressereresessmnenmossessensssesssesessesssasasnssessssnssstsssossssosssssesssssssesssssesssssssanssnsssassnsessassonsas 17 o

Unannouncud |
Justification
REN By.
QURTIY Distribution/
INSPECTED

jii

Availability Codes

A Software Development Specification
for Nonlinear Structural Analysis

Joseph A. Landers*

Abstract

This report describes a programming environment for structural engineering
computations. Offering many advantages over the cutrent state of technology in
this area, the software system discussed here is highly flexible and portable. In
addition to carrying out sophisticated calculations efficiently on today's engi-
neering workstatioas, the environment can also exploit the power of larger
computers by linking tasks over a local area network. Furthermore, the system is
programmable and extensible. Finally, the software system may be integrated
with existing programs such as finite element codes and mathematical libraries.

1 INTRODUCTION

For many years computers have found applications
in the solution of structural enginecring problems. The
machines werc, for the most part, utilized during the
analysis phase of a project. Often, the process con-
sisted of preparing an input file with a keypunch or
generating information with a text editor. After pre-
senting this data to a large and complex structural
analysis program in a batch environment, a substantial
volume of results would be returned to the engineer.
While making the most efficient use of limited com-
puter resources, this method of interaction was often
tedious and prone to expensive errors. For example,
one simple mistake due to a typing error might have
significantly changed the meaning of the input which
could have negated hours of computation. The batch
oriented environment also made the development and
testing of new methodologics and algorithms very dif-
ficult. Even when presented with an interactive text
editor, the construction and debugging of new concepts
and ideas often involved many iterations of the “edit,
compile and debug” cycle.

Over the past several years, significant changes in
the computer market have created new computational
opportunities for structural enginecrs. The availability
of low cost workstations equipped with powerful 32-bit
processors, high resolution graphic displays and inex-
pensive networking facilities can be expected to make
a significant impact on the way in which engineering
problems are formulated and solved. While the cost of
these computer systems has been dropping rapidly, the
amount of raw processing power has been growing
almost geometrically. This has been especially true in
the highly competitive market of general purpose com-
puter systems. Even the large scale vector and parallel
processing machines have now beccome more acces-
sible to general engineering applications. Significantly,
both hardware and software vendors are beginning to
come to a conscnsus on standards for the tools they
provide. For example, there are computer networking
standards for distributed file systems such as NFS [27],
standards for inter-machine communication such as
RPC [6), and standards for graphic display and interac-
tion such as PHIGS [5], GKS [12] and the X Window
System [28]. There are cven standards under develop-

*Department of Civil Engincering, Division of Structural Engineering, Mechanics and Materials,
University of California, Berkeley.

PRy

ment for operating systems such as POSIX [11]. From
a buyer's standpoint, this agreement among vendors has
helped to stabilize the computer workstation market
and make the choices of a particular brand of hardware
and software less importani. Now, not only does the
buyer have a better basis for comparing different sys-
tems, but the decision to purchase one vendor's equip-
ment over another's no longer entails a lifelong com-
mitment.

Unfortunately, the advances in structural engincer-
ing software have not kept pace with the rapid changes
in the compute: marketplace. Certainly, some applica-
tions which were developed and used on computer
systems popular in the past have been modified to run
on today's workstations [19]. Some software, devel-
oped in the commercial sector, has been radically modified
and enhanced to exploit the capabilities of the new
hardware [7]. A few new packages have even been
written [25]. Yet, while these systems provide func-
tionality in the form of large and monolithic programs,
little innovative software is available to the research
and development community of structural engineers.
Because this group relies upon advances in scveral
diverse areas such as mathematics, numerical analysis
and computer science as well as engineering, they
require a computational environment that is responsive
to changes in the state of the art, Since new techniques
and algorithms must be tested and debugged as they are
implemented, these researchers also require a system
that provides a high degree of flexibility and interac-
tion.

This report provides a somewhat detailed descrip-
tion of a software environment for structural engineer-
ing applications. While the system discussed here is
primarily intended for the design and implementation
of new methodologics and techniques in finite clement
analysis, this software can also be extended and applied
to commercial production situations as well. The origi-
nal intent of this rcport was to furnish a description of a
theoretical system, with the implementation coming at
some later time. However, during the course of prepar-
ing this account, it became clcar that at least a portion
of the programming environment would prove of great
value in the author's current research in the develop-
ment of a new finite clement model for shell structures.
Hence, while the software system described here has
not been completely constructed, some major sections
of the environment have already been implemented at
the University of California, Berkeley. Several of the
other ideas described here have, for the most part,
already been included in other systems outside of the
discipline of structural engineering [9, 13,29]. They
should not, therefore, represent a great deal of effort to
add to the alrcady existing collection of compuier code.

Hence, the detailed account of the software system
described here is more than just a theoretical exercise,
it contains the recommendations based upon partially
implementing the environment outlined in [14].

2 HISTORICAL PERSPECTIVE

Although this software system contains many unique
and innovative ideas in the context of structural engi-
neering applications, these concepts are rclated to a
large body of previous work. The programming envi-
ronment described here not only builds upon the work
done by others in the area of structural engineering, but
it also draws upon the experience of those from outside
of this field, including such diverse areas of mathemat-
ics and computer science. Many valuable insights can
be gained by studyiug how previous researchers have
investigated and solved problems related to this topic.

This programming environment owes much to three
earlier structural engineering software systems. The
first, the Integrated Civil Engineering System or ICES
[17], was a very ambitious collection of programs de-
veloped during the 1960's at the Massachusetts Institute
of Technology. ICES sought to provide a common set
of utilities not only for structural computations, but
also for other areas of civil engineering as well. Con-
sidering the capabilities of the computer hardware avail-
able at that time, the system was quite sophisticated.
Applications used a crude keyword-oriented command
parser, and were able to extract and manipulate objects
located in simple tables. Later, a commercial vendor
extended the functionality of the software to include
automated design facilities [22]. This vendor still
supports a derivative of the work today. The second
program which had a major influence on the current
software system was the Problem Oriented Language
Organizer or POLO [18], developed during the 1970's
at the University of Illinois. A POLO system for the
analysis of engineering structures featured a high level
of interaction in the manipulation of finite element
models. The language was quite flexible and friendly.
The third and final system to have influence on the
design of the current environment was developed dur-
ing the 1980's by the architectural firm of Skidmore,
Owings and Merrill in Chicago, Illinois. While private
firms have always developed software to solve prob-
lems particular to their business, this system had many
interesting attributes. The Structural Data Manage-
ment System or SDMS [16], was a well developed
environment for the design and analysis of tall build-
ings. SDMS featured a high level of interaction in the
form of both a fairly sophisticated command parser and
graphic interface. The system also had the ability to
share information with other application packages in-

cluding those oriented toward drafting and mechanical
design.

Large, general purpose finite element codes have
also had a significant influence on the overall design of
the current programming environment. The system
detailed in this report is not intended to replace these
codes, but rather it seeks to augment them by integrat-
ing their operation with new capabilities. From the
standpoint of the construction of a software system for
structural engineering computations, these general pur-
pose finite element codes are more interesting, not in
terms of the activities they support but rather for their
information requircments. Many popular general pur-
pose computer codes are available for finite element
analysis applications. Some of these include NAS-
TRAN [19], ANSYS [7] and SAP [36]. These codes
provide a library of finite element models and have a
variety of analytical capabilitics including both static
and dynamic response options and perhaps a capacity
for investigating non-lincar behavior.

A few research systems for mathematical and engi-
necring calculations provide some other interesting
parspectives. The CAL 78 [35] system is a matrix
interpreter specifically oriented towards solving struc-
tural engineering problems. The MATLAB [23] sys-
tem provides some additional sophisticated functional-
ity in 2 more genecral mathematical setting. A large
general purpose symbolic manipulation system,
MACSYMA [21], has the ability to solve problems in
differential and integral calculus, along with many
other capabilities. The research code FEAP [33] is a
hybrid between a general purpose finite element pro-
gram and a structural enginecring development system.

With the availability of engineering workstations,
several projects developed by the computer science
community also deserve some mention. These include
the highly sophisticated Smalltalk [9] system, which is
a complete programming environment for software
development and a programming support system for
the Ada [1) language which has been marketed by
several vendors.

Ideally, the system described in this report should
be an aggregate of all of the best features of the pro-
grams reviewed here. However, given the constraints
on both the time and resources available, this new
programming environment for structural engineering
computations can only approximate this ambitious goal.
The new system is still very powerful and flexible, It
combines the response of an interactive program with
the speed and efficiency of a batch-oriented system, It
is programmable and extensible, The intent of this
report is to provide a common framework where all of
the separate ideas and concepts presented in this sec-
tion can be combined for the benefit of structural engi-

neers. It is this integration that is especially important
for engineers who work at the leading edge of computa-
tional technology.

3 TERMINOLOGY

In this section several technical terms and concepts
which are frequently used throughout this report will be
defined and discussed. The intent of this section is to
provide a common reference point to these ideas so that
the reader can have a better understanding of the under-
lying structure and philosophy of the current program-
ming environment. Since it is assumed the reader is
already familiar with the various technical terminology
in the realm of structural engineering, only a few new
concepts from field of computer science will be pre-
sented. Note that while the definitions presented here
are quite general, they may or may not represent the
meanings in a more gencral computer science context,

3.1 Interpreter

An interpreter provides a mechanism for translat-
ing input provided by the user into actions which are
usually executed immediately by a machine. A com-
piler, in contrast to an interpreter, generally stores this
translation in a file, possibly in some different internal
form, for execution by a machine at a later time.

Interpreters allow new algorithms to be written
interactively. They can provide immediate feedback
on the implementation. While an interpreter may not
always provide the most efficient means for the execu-
tion of a program, they usuvally can offer very high
levels of debugging support. The execution of code
resulting from processing a user's input is most often
done by another piece of software called a virtual
machine.

Input translation into a form suitable for execution
on a machine is done in five phases. During the first
two phases, the input is scanned and parsed. Here, the
information is broken into pieces called tokens. These
tokens are recognized on a syntactic level during the
second phase in order to determine which program-
ming structure is being represented. For example,
consider the following line of code.

sum=3a + 2.0

The tokens are “sum,” “=,” “a,” “+,” and “2.0.” Syn-
tactically, this line represents the form of a binary
addition followed by an assignment. While the second
phase analyzes the form of the input, the next transla-
tion phase studies its meaning. This third phase, se-

mantic analysis, may provide extra information on how
a task is to ultimately be carried out on the machine,
Altematively, semantic analysis may also find errors in
the application of the programming constructs based
upon the context of their use. For example, the follow-
ing line of code is syntactically cormrect as an assign-
ment of the sum of two constants, but it is semantically
in error because character strings may not be added to
integer values.

a=1 + “abcdefg”

The fourth phase performs optimizations on the code.
This is critical in a programming environment for struc-
tural engincering calculations because such tasks are
generally very computationally intensive. For more
details on this phase see [15]. The fifth and final phase
consists of mapping the translation into a form suitable
for execution on the machine. Here, forexample, loops
are converted to machine idioms for “test and branch.”
More details on all of these phases can be found in [2]
or [37].

3.2 Language Design

Language design and implementation are impor-
tant issues in any interpretive environment but they are
particularly critical for the system described here, There
are several reasons. First, the language interpreter
serves as the primary mechanism of communication
between the user and the computer. Hence, the envi-
ronment must provide a flexible means of translating
concise engineering descriptions into efficient actions.
Second, the form of the language dictates how other
portions of the system fit together. For this reason, the
language must provide sufficient power to express a
wide varicty of concepts and ideas. Finally, in order to
keep the environment accessible to a large pool of
engineers who may work with the system only on
occasion, the entire collection of software must be
logically designed and implemented. If possible, it
should be biased toward exploiting the user's existing
knowledge of computer programming. For example,
an environment would be much easier to learn and
apply if the programming constructs and techniques
were tied to an existing language such as Fortran
rather than a language dialect unfamiliar to engincers.

Two important language concepts which hold very
prominent places in the design of this environment for
structural engineering computations have to do with
the fype and scope of variables. A type is categorized
by a set of allowable values, a mechanism for specify-
ing those values and a collection of permissible opera-
tions which use those values, The scope of a variable

deals with the portion of program text where a given
name has the same interpretation.

The current Fortran standard [3] allows only fora
limited number of primitive data types. For the most
part, these types are closely related to the underlying
computer hardware and there is no mechanism for
defining new data types. By contrast, the system de-
scribed here not only supports Fortran's simple types
but it also allows the programmer to construct new data
types by aggregating these basic types with any already
existing data types. Essentially, this environment im-
plements some of the features described in the proposed
Fortran 8x language [4). The ability to define and
manipulate variables composed of aggregates of the
basic types not only makes writing and debugging
algorithms much more straightforward, but it also fa-
cilitates the integration of different applications under
a common environment. For example, the program-
ming environment may not only link to an existing
finite element program coded in Fortran, but it may
also communicate with a symbolic manipulation sys-
tem written in the LISP language [34].

Under the existing standard, the scope of a variable
in a Fortran program is limited to the function or
subroutine where it is defined. Names of common
blocks and program units are globally persistent. Fur-
thermore, there is no facility for hiding data definitions.
While program units may associate storage through
common statements, there is no standard mechanism
for maintaining variable names across program units.
By contrast, the programming environment described
here allows not only data hiding, but also contains
provisions for named global storage.

3.3 Virtual Machine

A virtual machine may be roughly defined as a
complete computer system, including both the underly-
ing hardware and its software, implemented entirely by
a computer program. Virtual machines mimic the
hardware facilities supplied by a processor, memory
and input/output actions as well as the computer's oper-
ating environment. They may also support other tasks
such as local disk storage and access to network func-
tions.

Virtual machines offer several advantages. First,
they can provide a portable base for software develop-
ment. Only the virtual machine itself must be ported to
a new computer architecture or operating system. Ex-
isting applications which utilize the machine do not
have to be modified. Second, these machines present a
common interface to the application software. Hence,
there tends to be greater uniformity for both the pro-
grammer and user. Third, virtual machines can be

quitc flexible and often offer an alternative to large,
monolithic programs. A user may pick and choose
among options dynamically. There have been many
successful environments based upon virtual machines
including those described in [16], [31] and even [24).

3.4 Computer Networks

A few years ago computer networks usually con-
sisted of small groups of machines sharing relatively
tiny pieces of information around a single office or
building. Altematively, they also described a collec-
tion of computers shipping data over a leased telephone
line. While these networks provided a valuable service
in transferring blocks of information to remote sites,
they were somewhat expensive to operate reliably and
they required extensive user intervention.

Today, computer networks have much more pow-
erful capabilitics. Well defined standards now exist
[32] so that many very differcnt computers can share
not only individual data but also physical resources
over a wide geographical area. For example, not only
can objects such as simple collections of files be trans-
parently and instantancously accessed, but entire data-
bases may also be made available.

Furthermore, as an outgrowth of the ability to
share physical resources over a computer network there
are also some sophisticated communication facilities
now available. One of these, the public domain Re-
mote Procedure Call or RPC mechanism [6], allows
user level software to dynamically call procedures on
another machine. This powerful operation is supported
by the system described in this report.

3.5 Dynamic Binding

Dynamic binding is a relatively new technique of
combining pieces of software together in a manner
which allows a great deal of flcxibility on today's
general purpose virtual memory computers. In stan-
dard practice, a programmer often describes the actions
a scction of software should take by providing a de-
scription in a high level language such as Fortran or C.
This description is then compiied into a format suitable
for the underlying computer hardware. At a later time,
different modules are linked or bound together result-
ing in a single monolithic exccutable image. This
binding, which is only done once and lasts essentially
forever, is known as static binding,

In today's virtual memory computer architectures,
static binding can lead to gross inefficiencies in the
exccution of a program image. This is because these
computer systems often bring in tiny pieces of a pro-
gram to the machine's memory in segments called

pages. These pages represent both the instructions and
data of the executable image. In large codes, such as
those commonly employed in finite element studies,
there are often many portions of the program which are
not used in a given analysis. Unfortunately, however,
these unused areas must be transferred in and out of
computer memory before the proper segments of the
code are resident and available to the central processor.
This unnecessary and often time consuming conduct
has two detrimental effects on today's modern com-
puter architectures. First, it causes the program to seize
large amounts of valuable physical memory resources.
This can negatively impact the bchavior of other jobs
running on the computer. Second, many computer
systems dynamically move jobs out of physical mem-
ory and to secondary disk storage when central memory
facilities become unavailable. This process is called
swapping. Since these large programs capture many
resources, the central processor unnecessarily bumps
jobs to and from the much slower secondary storage.
The net result is poor response time for all jobs running
on the computer.

Some systems, such as thc one dcscribed here,
permit objects to be dynamically loaded. Only a small
set of frequently used functions is actually part of the
executable image. Other portions particular to a given
task or implementation are bound as they are nceded.
This can greatly improve computer system perform-
ance and response time.

4 SYSTEM OVERVIEW

The system described here is a flexible and effi-
cient computational tool for structural engineering
applications. In this environment, not only may the
problem specifications be easily modified, but new
algorithms and techniques may also be readily imple-
mented. Problem parameters may be monitored and
changed. This system is based upon current available
computer hardware such as an enginecring workstation
with a 32-bit processor, bit-mapped graphics display
and computer networking interface. Besides being able
to exploit the capabilities of this type of hardware, the
system can also take advantage of other, more powerful
machine architectures by linking tasks over a local area
computer network,

This environment does not aim to replace existing
structural engineering software, but rather to augment
these programs by allowing the computer code to exist
in a larger and more flexible framework. The system
works in a manner similar to small, independent oper-
ating system built on top of the existing operating
system gencric to the workstation. In the spirit of many

SN DRV ISR V SN

A A VRt ek

i e i Sat e g car e €e 4 reie .

PR

other existing computer standards such as [32, 12], the
current environment is described in terms of applica-
tion layers. Other than a small and compact set of
utilities which represent the core of the system, there is
a great deal of latitude in what an individual implemen-
tation actually contains. In this way, new implementa-
tions can still compatibly exist with older ones and not
be burdened by unnecessary details. For example, a
particular implementation may not contain a computer
network utility library because its application is not
required. If, however, one is added at some later time,
the guidelines are provided so that this library can
interface and behave the same across all implementa-
tions.

The general structure of the environment is graphi-
cally depicted in Figurc 1. There are four major com-
ponents: the interpreter, a virtual machine, the sct of
structural support libraries and a package of applica-
tions libraries. Each of these components performs a
specific and well defincd task within the programming
environment.

4.1 Virtval Machine

The virtual machine is the heart of the system.
Providing the locus where computations are carried
out, it is equivalent to a complete computer system
implemented entirely in software. The virtual machine
is constructed to provide an interface between the ac-
tual computer hardware along with its operating system
software and the rest of the structural engineering pro-
gramming environment. Not only does this arrange-
ment provide a portable development platform for the
rest of the modules, but it also localizes the changes
that must be made when the entire environment is
poried to a new computer system.

This virtual machine provides a mechanism for
manipulating small pieces of data by executing simple
operations. There is a segment to store instructions, a
separate segment to store data and a few locations to
keep temporary information which needs to be ac-
cessed quickly. Additionally, the machine usually
operates by traversing a loop in which instructions are

Geometry Property Boundary Loads Analysis Results
Structural
Libraries
Finite
Flement,
Codes
—y] Command Virtual Application Software
@9 Interpreter Machine Libraries Libraries
T
i
! Other
| Ctilities
[
)
t
Computcer
System

Figure 1: General structure of the programming cnvironment.

decoded and executed in order to examine and modify
information located in the data area of the system. This
is completely analogous to the way in which the hard-
ware inside a modern computer behaves. The separate
data and instruction areas represent the physical mem-
ory of the computer, the temporary locations represent
the machine registers, and the decoding of commands
to examine and modify small pieces of data is the
function of the central processor.

Some typical instructions used by the virtual ma-
chine are show in Table 1. Note that the only data types
supported at this level are double precision floating
point, integer and character or byte representations.
All other data types, including those that are aggre-
gated by the interpreter's programming language arc
decomposed into these simpler types by thie parsing and
code gencration process.

The virtual machine described here is somewhat
more complex than those discussed in [29] and [13].
This is not surprising since the task at hand is much
more ambitious. For example, the input/output facili-
ties are necessarily more robust. Furthermore, the
system must interface to other software packages such

A simplified schematic of the virtual machine and
how it interacts with the system's other major modules
is shown in Figure 2. The box labeled “Control Logic”
corresponds to the central processing unit, while the
box labeled “Code Region” contains an internal repre-
sentation of the user's program. The section labeled
“Data Region” represents a simplification of the virtual
machine's internal memory. Finally, the rectangle la-
beled “Foreign Data Mapping” corresponds to the ca-
pability of translating both data and code from external
programs and libraries into a format that the virtual
machine can understand.

Since the system provides support for exporting
operations over a local area computer nctwork, the
machine must provide facilitics to build and decode the
portable data packets. This is critical because different
kinds of computers may store objects in diffcrent ways.
For example, even though most machines represent
integers as 32 bit numbers, the underlying order of

Command
nterpreter

as existing finite element codes or even subroutine
libraries written in other languages. Hence, the ma-
chine must provide a mechanism for linking the virtual
machine's data arca with that of the externally provided reee """ 1
module. To carry out this task, the machine provides I I
the capability to map sections of its internal storage I Code Data |
arca onto the data area of other externally supplied | Region Region |
subroutines and functions. The user can easily take | |
advantage of this feature by using the rich varicty of | [aALu711 | 220 |
data types supplied by the interpreter's programming | [ALU72 1 |le— C[?:tr()l > 30 |
language. | laLus73 BIC | . a0 11
| [inc2s 50 ||
Instruction Parameters Description | [psti 4 470 l
I 33.0 I
ALU op, arguments Binary arithmetic operations| | Foreign 0 |
11)15((:: region, size })ccremer:t ve;luc.in rcgion | Data . I
region, siz¢ ncrement valuc 1n region N
LOD rcgion. size Load data from rcgior? | |CALTLO Mapping '
STR region, size Store data to region | lpop4 |
PSH size Push data onto the stack | 460 ||
POP size Pop data from the stack | Machine 23.0 |
JPZ code, addres Jump if code is zero b e e e N 4
IMP code, op, address Compare code and Jump
CAL address, arguments | Call local routine Structural
FSL address, arguments | Call remote routine Libraries
Table 1: Some typical instructions. Application
Libraries

Figure 2: Virtual machine schematic.,

e 2B ket A Ve e e e thr Ay

these pattems may be quite different. The module
labeled “Foreign Data Mapping” performs this transla-
tion, among others. It also must be able to bind to the
network, establish connections and process the transac-
tion.

There are several points that should be made about
the implementation of the virtual machine. Most simple
constructions use a stack arrangement. That is, the
representation of the code and data regions depicted in
Figure 2 are contiguous linecar sections of memory.
While this is the most straightforward approach, such
an implementation may be somewhat slow. For this
reason, the control logic contains some storage loca-
tions, corresponding to registers in an actual computer's
hardware, where frequently used information can be
stored. Also, since the virtual machine contains the
lowest level functions in the entire programming envi-
ronment which are frequently executed, picces of this
scgment are frequently coded in assembly language.
For ¢xample, the critical input/output facilitics are very
often highly dependent on the underlying computer
hardware, so they are specially coded in assembly
language.

4.2 Interpreter

The interpreter serves the critical function of trans-
lating the input into a form which can be efficiently
uscd by the virtual machine. The structure of the
language accepted by the programming environment
plays a large part in design of this section. Supporting
a gencrous number of program constructs and higher
level functions, this module performs the translation of
the user's input through several phases. Figure 3 sche-
matically depicts the interpreter's operation.

The language constructs accepted by the inter-
preter are a mixture of both C and a dialect of Fortran
similar to Fortran 8x. The language is structured and
allows for uscr-defined data types. In addition to sup-
porting functions written in its own language, a foreign
function interface also exists for procedures written in
other languages. Finally, objects may be dynamically
bound to the programming environment.

Some typical programming constructs are shown
in Table 2. These include a gencral purposc if then else
statement, a case facility and several iteration or loop
constructs.

Data types play an important part in this program-
ming environment not only because they make devel-
opment and implementation easier, but also because
they facilitate the interaciion between the software
system and programs written extemally. The basic
building blocks of the data types of this system are
shown in Table 3. Additional types may be mixed and

Source
Program
ey -
I Lexical Token P Parse | S tic |
| Aualyser [Stream arser Tree Analyzer

J
| Symbol |

Table
] 1 Gt |
I Code {
I 1
1 Mudliiue Tmpeoved Code |

Code Pl
I Generator Code Optimizer '
I |
i Machine !
| Code |
Interpreter

L e - - - e e e -

[Virtual

Machine

Figure 3;: Command interpreter schematic.

combined with these. For example, a package of data
representing a node might be constructed by combining
floating point types with integers. Then, an array of
100 objects of this type might be declared as displayed
below. Comments are enclosed in matching /* */'s,

type node {
doublex,y,z; /* locations in space */
integer fixity; /* dx,dy,dz,rx,ry,xz */
integer id; /* a reference number */

?
node nodelist{100]; /* an array of 100 nodes */

Note that, in order to access the spatial location along
the X axis of the fifth node, one would use:

nodelist[S].x
where the . means “member of.” This programming
environment also has a limited pointer mechanism to
allow portions of the virtual machines internal memory
to be mapped to the storage locations of external data
areas, A dcclaration of the form:

pointer(node,nodeptr)
would declare the variable nodeptr to be a pointer to an

object of type node. The availability of this simple
pointer type also means that dynamic memory alloca-

Statement Form

Description

varl =var2 =...=varN
{stmtl ; stm2 ; ...; stmtN }
if cond then stmt else stmt

do (iteration expression) simt
do (expression) stmt

do (value) times simt

var = name (parameters)
print (format, exprl ... exprN)

case (expr) case range: simt ...

General assignment statement
Statement block

If-then-clse construct

Case selection

Iterated do loop

Tested do loop

Ranged do loop

Function call

Print with format

Table 2: Some typical programming constructs.

Size
Type (in bytes) Description
character 1 Smallest available unit
integer 4 General purpose integer values
double 8 General purpose floating point values
complex 16 Optionally implemented complex values
quad 18 Optionally implemented in floating point values
Table 3: Basic data types.
Fall
Dack
Task
Op- Linear System AX =D { Figure 4: Remote procedure
. = Virtual Network call schematic.
SubOp: Factor A = LU M:nl::l:;ao Coll‘l?ﬁ:‘llter
SubOp: Solve LUX =B
Remota
Super
Computer

e R et e B s - 4 e Lt

tion is possible within the system. Hence, one can
allocate a list of objects of type node dynamically by
using:

flag = allocate(nodeptr,node,100)

where the intrinsic function allocate is called to assign
storage to the location pointed to by nodeptr. The flag
variable returns an error status if allocate was unable to
find sufficient space for the new data.

The foreign function interface provides access not
only to the structural engincering and applications li-
braries written in other Ianguages such as C, LISP or
Fortran, but it also allows procedures to be accessed
from across the local area network. This ability to
export tasks to remote machines allows the program-
mer to dynamically sclect machine power for a given
computational task with a fine level of control. Figure
4 schematically depicts the remote procedure call mecha-
nism.

Network tasks are broken into operations at the
procedure level. As shown in Figure 4, a sample
operation such as the solution of a lincar system of
equations may be considered a single task, or it may be
further divided into sub-tasks, such as factorization and
forward- and back-substitution. In cither casc, the
operation is dispatched to the virtual machine where a
course of action is taken. The task may be exccuted
locally by the virtual machine. Or, the opcration might
be donc on a local computer. Alternatively, the task
could be exported to a larger supercomputer if neces-
sary. In the cvent that a given computer is not avail-
able, a fall-back mechanism is possible. Hence, a
computation docs not have to halt if access to remote
machine is not possible, the calculation could fall-back
10 a local computer and continue processing. While the
remote procedure call mechanism does entail a certain
amount of overhead to sct up and tear down network
conncctions, it may still prove very worthwhile if the
remote resources can provide sufficient capacity to
handle very computationally intensive tasks.

Users may interact with the programming environ-
ment through the interpreter in three ways. The first is
by dircctly entering commands into the system. The
input is translated and run on the virtual machine syn-
chronously. Any program information is buffercd so
that the user may return to the previously entered data
and modify it by using a standard text editor. This
mode of operation is similar to that provided by [9].
While this method of interaction can be very conven-
ient for creating short programs or debugging algo-
rithms, most larger problems often use a second or
batch oricnted method. Here, input is processed and
executed by the virtual machine asynchronously. This

10

method of operation not only gives a better level of
performance for larger computations, but it also pro-
vides more opportunity for the optimization of numeri-
cal calculations. The third and final method of interac-
tion requires the presence of a graphic application
support library, With this method, some degree of
interaction is provided for selecting objects in a display
window. This last method is particularly valuable
when computations make use of the structural support
library.

As depicted in Figure 3, there are five major com-
ponents to the command interpreter. Each of these
modules serves to translate the user's input into a form
suitable for execution on the virtual machine. Lexical
analysis breaks the source program up into small pieces
called tokens. Next, the parser constructs a new inter-
nal representation of the program as a tree. This key
encoding preserves the program hicrarchy and, through
the symbol table, the form of the constants and vari-
ables in a portion of the software. During the third
phase, the program is checked for semantic errors and
some Type conversions are carried out, The code
optimizer translates expression trees into directed graphs
in order to find common expressions. Finally, machine
code is generated during the last phase.

From an implementation standpoint, the interpreter
represents the current state of the art in computer sci-
ence applications. It makes use of an LALR parser [2],
sophisticated code optimizer [15] and code generator
[29]. In addition to providing facilitics for interactive
input and debugging support, the structural engineering
programming environment described here can commu-
nicatc over a local area network through the public
domain RPC [6] mcchanism,

Because the command interpreter plays such a
critical role in how the system is uscd, there are many
more features which could be added. A method for
incremental compilation, such as the one described in
[26] would greatly improve system response, although
it might require that the form of the language be modi-
ficd somewhat. Also, because different computers
have substantially diverse ways of evaluating floating
point expressions [20), a morc general format is re-
quired for floating point values exported by the remote
procedure mechanism. Unfortunately, this topic is still
an active arca of research and no standard method
exists for dealing with this problem,

4.3 Structural Libraries

The structural libraries provide the primary means
of applying the programming environment in engineer-
ing calculations. This collection of routines is specifi-
cally oriented toward solving structural engineering

problems. Beside providing a named work space for
data, the code in this library supplies a collection of
utilities for building and manipulating finite element
modeis. A variety of standard structural analysis tech-
niques is also available, algorithms and techniques
which are not part of this library can be readily pro-
grammed by supplying information to the command
interpreter,

This programming environment provides a storage
area for structural enginecering models. The major
portions are listed and described in Table 4. There can
be many different storage areas during a session, but
cach space has a unique name associated with it. Asso-
ciation between this named storage area and other
portions of the system can be automatically mapped by
the virtual machine.

Arca Description

Nodes Spatial nodal locations

Elements | Element incidence pool

Materials | Geometrical and material parameters
Boundary | Displacement boundary conditions
Loads Nodal and element force conditions

Table 4: Named work space data areas.

The structural support library separates engineer-
ing tasks into six distinct areas. This division roughly
corresponds to the ways in which analytical models are
commonly constructed, modified and used. Note that
the librarics only provide an interface in terms of func-
tions that can be called through the command inter-
preter. This collection of utilities is essentially state-
less. When context information is required by one of
the routines, an identification handle is returned by the
routine which creates an instance of an object,

4.3.1 Geometry

The geometry subsection altows an engineer to
build and change the geometrical description of a model.
For example, this arca contains finitc element mesh
generators for rectangular, cylindrical and spherical
coordinate systems. In addition it may contain a gra-
phical interface so that these meshes can be displayed
on a terminal or hardcopy device, Some sample fea-
tures of this package are listed in Table 5.

4.3.2 Property
The property subsection lets the engineer specify

the constitutive and material propertics of the model
under consideration. This includes not only the physi-

11

cal properties such as mass, density and thickness but
also analytical relationships such as yield surfaces,
damage constraints and nonlinear response parameters.
A sample of some of the features provided by this
collection of routines is shown in Table 6.

Function Description
gen grid (x1, y1, ... Rectangular grid
xN, yN, n, m)
move node (node, x1, Move a node in space
yl, z1)
id = add node (x1, y1, z1) | Add a node, return identifier
flag = delete node (node) | Delete a node, return code

Table 5: Some geometry operations.

)

Function Description

id = add property New instance

(valuel, ... valueN)

flag = change property | Change nth id entry
(id, nth, value)

flag = deletc property Delete a id, returning code
(id)

Table 6: Some property operations,

4.3.3 Boundary

Displacement constraints can be added or modi-
fied by using the utilities supplied in this package. In
addition to providing simple support conditions, dis-
placcment constraints may also be specified. Such
constraints might be uscful during an analysis which
requires either complex support conditions or involves
the study of bodics subject to contact conditions. Some
functions from this subscction are listed in Table 7.

Function Description
id = add boundary New boundary instance
(node)
flag = delete boundary | Delete support condition
(id)
flag = set boundary (id, | Add fixed support at id
code)

flag = mast boundary Link id to master

(master, code, id)

Table 7. Some boundary operations.

[TV P Y

4.3.4 Loads

By using this subsection of utilitics, a uscr may
specify the static and dynamic loadings on a model.
Different loading cases are provided along with the
capability to combine different loading conditions.
Through the command interpreter, options are also
available for generating loadings according to general
functions. Several possible operations provided in this
package are listed in Tablc 8.

Function Description
id = add load (node, | New load instance for case
case)
flag = delete load Delete load condition
(id)
id = combine load Newload=11 *ml + 12 *m2
(id1, ml, id2, m2)
id = time load (kind, | Dynamic load
id, dt)

Table 8: Some loading operations.

4.3.5 Analysis

This package of analysis routines allows the engi-
ncer to study the structural model by using a library of
existing algorithms. Note that the programmer may
also directly specify new algorithms and techniques
directly at the interpreter level. This collection of
software routines covers the most common analytical
metheds including static analysis, difterent approaches
to solution of nonlinear systems, and options for dy-
namic analysis, including both time history and re-
sponse spectrum solution methods, A few operations
are listed in Table 9.

Function Description

id = analysis fcap
(workspace)

Crcate a FEAP input file

flag = run feap (id) | Carry out a FEAP analysis
id = save feap (id) | Store FEAP response
parameler

Table 9: Some analytical operations.

4.3.6 Results

This last collection of routines allows the engineer
to extract information from the analysis phase in order

12

to examine various response parameters. For example,
end forces and moments might be converted to stresses
or reactions may be calculated. Although all informa-
tion in the analytical model's work space is available at
the interpreter level, these routines provide a set of
most common utilities usually required by the engineer
in order to investigate the behavior of a structural
model. Several features of this package are shown in
Table 10.

Function Description
disp = delta resuit (id) Extract displacements
stress = stress result (id) | Extract element stresses
node = node result (id) Project nodal stresses

Table 10: Features from the result package.

4.4. Application Libraries

The application libraries consist of a collection of
utilities which, for the most part, optionally support the
programming environment, They essentially provide a
mechanism by which the system can be extended in a
portable and compatible way. While the virtual ma-
chine, interpreter and structural libraries are necessary
to the software system in terms of structural enginecr-
ing calculations, the application libraries provide extra
functionality.

By using the dynamic binding mechanism of the
system, the programmer can make efficient use of the
tools supplied by this collection of software. Figure S
shows how new applications can "grow" to accommo-
date the new operations, Originally the two boxes on
the left represent the original programming environ-
ment and a library of additional applications. The
interpreter instructs the system to bind the new utility
to the systcm dynamically. The box on the right repre-
sents a new version of the system, which includes the
application, Once this binding has taken place, the uscr
may call any function in the library as if it were origi-
nally part of the system, The layered approach is not
only very efficient in today's virtual memory comput-
ers, but it also facilitates the construction of software
systems tailored to specific applications and hardware
environments, If a particular problem does not require
a set of operations, then it never has to become part of
the programming cnvironment.

In the context of the present system, the applica-
tions library contains three separate utilities, They are:
the system interface to a set of popular finite element
codes, a mechanism for linking to some networking
and mathematical librarics and a provision to connect
1o a network based computer graphics system,

Base New
System System
b —_— —
<« Additional | I
| | Function
] Le— — 1

Figure 5: Dynamic binding.

The links to various finite clement codes is usually
system dependent. Many sites have definite prefer-
ences for the codes they wish to support and use. The
library routines do not do any calculations themselves.
Instead, they only implement the interface between the
virtual machine and the data areas of the finite clement
programs.

The second set of utilitics, access to network and
mathcmatical librarics, performs two important tasks.
The first is make available, a set of functions which can
map user level data objects into a portable network
independent format. The second is provide an interface
to several popular mathematical subroutine collections.
These include software systems such as LINPACK [8],
EISPACK [30], and the IMSL [10] collection of rou-
tines, This interface provides some powerful tools
when new cngincering algorithms are developed and
studied,

The third group of application utilities is an inter-
face to a graphics and workstation windowing systcm
called X Windows [28]. The present library currently
has the capability to display geometrical data, draw
simple graphs and even animate the responsc of engi-
neering models to various loading conditions.

There arc many other possible applications which
might be added in the future. For example, support for
high level engincering graphics interface such as PHIGS
[S), a library of routines for exploiting the parallel
processing of capabilities of hardware, or a mechanism
for translating the language accepted by the interpreter
into standard Fortran would all be very useful addi-
tions to the programming environment.

5 EXAMPLES

In order to illustrate how this programming cnvi-
ronment can be applied to structural engineering prob-
lems some short examples are listed here. The first

13

example discusses how the system might be used to
carry out a nonlinear analysis. Two other examples are
presented by demonstrating the capabilities of the pro-
gramming environment in common situations.

The task of studying the nonlinear response of a
finite element system to a given loading condition
involves three major steps. First, the model must be
constructed. Next, a solution method must be chosen
and applied to the model. Finally, response paramecters
are extracted and studied.

The construction of a finite element model in the
system described in this report involves creating a
named workspace for the data, generating information
by entering commands to the interpreter and possibly
examining a graphical representation of the structure
by using the facilities provided by thc window system,
For instance, the following commands might be used to
generate the geometrical description of the finite cle-
ment model. The model is a 7 by 7 grid of elements 10
units by 10 units in size. The interior nodes are per-
turbed by some amount in order to study the behavior
of a distorted mesh,

function my_geometric_modcl(model_id)
Model model__id;

{

integer i;

double random();

Node node_data;

model_id = new_model(“Nonlincar Study”);
gen_grid(0,0,10,0,10,10,0,10,7,7);
doi=1,49{
node_data = node_info(i);
if ((node_data.x > 0) and
(nodc_data.y > 0) and
(node_data.x < 10) and
(node_data.y < 10)) then {
/* random returns values in the range 0 <n< 1%/
node_data.x = node_data.x + 0.5*(random() - 0.5;
node_data.y = node_data.y + 0.5*(random() - 0.5);
}
}

return;

}

Loads, material properties, and boundary conditions
are added and modificd in a similar manner.

Next, an analysis technique is chosen. For simple
nonlinear behavior, the enginecr might elect to study
the system using an existing finite clement package.
Hence, the user could simply generate an input file for
the code.

generate_input(model_id)
Model model_id;

/* 10 steps of newton raphson iteration */
describe_analysis(model_id," newton",10);

/*code” is the package which will use the analysis */
gen_code(model_id,"code");

return

}

Altcrnatively, the user might specify the algorithm
dircctly, instead of using the templates provided by the
system. For example, to perform 10 Newton-Raphson
iterations, the following commands could be used.

my_newton(model_id)
Modecl model_id;

{
do (10) times {
make-tangent(model_id);
make_residual(model_id);
get_displacements(model_id);

}
)

Other functions are invoked to construct and asscmble
the model's stiffness and load matrices.

Finally, the response parameters corresponding to
displacecments and stress may be examined, The re-
sponsc paramecters may be combined with the mesh
geometry, or they be output directly as numerical val-
ues.

Two other demonstration examples arc also shown
herc. Both of these scck to illustrate some of the
working capabilitics of the current programming ervi-
ronment.

The first example is a demonstration system for
investigating the response of a single degree of free-
dom system, In order to carry out the required calcula-
tions, the programming cnvironment interfaces to the
MACSYMA [21] symbolic manipulation system, Us-
ing this tool, an analytical result in terms of the model's
physical parameters k, m and ¢ may be obtained. The
MACSYMA system gencrates a result in the Fortran
language, which is then returned to the programming
cnvironment. Given this infonmation, a graphical rep-
resentation of the system may be animated to show how
the systcm might respond to a given sct of initial
conditions.

Figure 6 shows a copy of the workstation's display
during the animation process. Three windows appear
on the screen, The bottom window contains the pro-
gramming cnvironment's command interpreter. Note
that the lincs input by the user arc numbered, so that
they may later be recalled, if necessary. The short

14

portion of program text visible in the window is repre-
sentative of how a piece of software would appear for
any application. The window in the upper right hand
corner contains a script for the MACSYMA system,
This collection of commands instructs MACSYMA to
symbolically solve the differential equation of motion
of the simplc model. Only a portion of the entire script
is visible in this window. The window in the upper left
hand comer depicts the physical representation of the
model, and how it responds to various excitations.

This example illustrates three important features
of the system. First, it shows the environment's capa-
bility to communicate with other computer programs,
even those written in different languages. Second, the
example clarifies the relationship between the com-
mand interpreter, network interface and virtual ma-
chine by placing each of the operations in a separate
window. Finally, it also features the graphic capabili-
ties of the environment.

The second example illustrates the use of the sys-
temn for the study of the nonlinear response of a braced
frame due to an earthquake excitation. Here, a six story
frame is subjected to a scaled ground acceleration, The
actual analysis is carried out over a local area computer
network, and selected results are saved for later study.

Four windows are depicted in Figure 7. As before,
the bottom window contains the programming environ-
ment's command interpreter. The particular segment of
code visible in the window scales the displacement
response values so that they may be more readily seen
in the graphic display. The windows at the top of the
screen contain the animated response of the frame
model. The window at the top right illustrates the
entire model and its response to the loading. Note that
brace on the second level has buckled and undergone a
permanent vertical deformation, The windows in the

top right hand portion of the screen are attached to

specific response values. In this case, these happen to
be the top story horizontal displacement and the second
story vertical displacement. Of course, other monitor-
ing is possible,

This example illustrates the capabilities of the sys-
tem to exploit a local arca computer network connec-
tion in order to carry out an analysis and forward the
results back to the programming environment, Further-
more, it also shows the system's abilily to integrate the
analysis opcration with a workstation's graphic display.

6 SUMMARY

This report gives a somewhat detailed overview of
a programming environment for structural engineering
computations. While the system is primarily intended

for the rescarch community, it may also find a wide
variety of applications in commercial production situ-
ations as well. The programming system is highly
modularized, provides a flexible and extensible plat-
form for software development and highly suited to
today's computer technology.

With the availability of low cost engineering work-
stations, equipped with powerful central processors, a
computer network interface and high resolution com-
puter graphic capabilities, the computational opportu-
nities for structural engineers is gradually changing.
No longer does the development of new algorithms and
techniques require that a programmer carry out many
iterations of the “edit, compile and debug” cycle. New
computer hardware has changed all of that. It is now
possible to provide a custom environment for structural
cngincering applications which provides support not
only in terms of the creation and manipulation of finite
element modcls, but also in the development and study
of new algorithms and computational strategics.

éggh\

The system described in this report is intended to
provide state of the art facilities for engineering calcu-
lations. Accordingly, this programming environment
contains several innovative ideas. Some of these are
listed below:

« The system is compartmentalized into four major
arcas: an interpreter, the virtual machine, a set of struc-
tural libraries and a collection of application libraries.
This division not only makes the development and
maintenance of the system much more straightforward,
but it also makes the environment much easier to use by
providing a logical overall framework.,

» A programmable and extensible command in-
terpreter is the major user level interface to the envi-
ronment. The command language is quitc sophisti-
cated. It allows the engineer 10 write loops, condition-
als, internal procedures and define variables. Further-
more, the system has scveral basic data types, and new
data types may be defined by the programmer,

SRL Edttor

¢ 1% &

¥ AR e ¥, %
iR

I s

is%
£ B
o0l SN system

3
SR
\§§« P Spring Dashpot
> ¥ /
Qgggxﬂ ‘]
%2
s

Tire %

il eqn
Hass PSJALFF(xt{t), t):

Bigans:xt (0

desm » ‘diff(x,t.2) + r = “diffOx,t,1) t K w x =
“A %W~ 2 %R« cos(uet);

Pxhitics ‘2’ lwdof(X,x,t)):

qxpltdss D » gin(wst) + E = coa{u=t);

xt{t)s= xh(t) + xp(t):

Fodoluging. evide, dLFf.expand, x = xp{t));

eqnlicoeff(plugin.sin(uert)):

eqn2icoeff(plugin.cos{wnt));

globalsolve:trues

fR{soln: linsolve((eqnl, eqn2}, (D, E))s

Lixt{0) a O;

plean2ieviX,tz0) = 0;
#soln: linsclve(legni, eqn2), (B.CI)s

then (rl: alpha + beta,
r2; alpha - beta. 2
print{“=«~ gystem lg overdamped --=-"), o2
return(B » Xe ~ (rl w t) + C » Xe ~ (r2 »)i/
else (beta; XL » beta,
print{"~~= system is underdamped ==--"),
return{Xe ~ (alpha » ¢t} » (B » cos(beta » t)
+ C » gintbeta » t)))Ns

integer forelign vaxima;
integer status:

else
el
Clean_Up():

EOf on “input.cmds”
CSAL)> size !lnebuf

1CSAL) set 7fitrace
CSAL)> run

4)>))) FF1 finished with vaxina
FFI sending packets to “aninate”

1f ({status = open{“sdaf,v")))= O)
Error(“script flle does rot exist"):

1f ({(status = vaximalarglist)) Is 0)
Error(“Vaxima falled™);

se
Animate SDOF(Find.Fortran(“result™));

232> Currently using 1538 of 30000 lines,

3)))) FFI connect to vaxima lexecutable) on “cardinal berkeley,edu”

FFI connect to animate on “cardinal,.berkeley.edu”

en W

Figure 6; Single degree of frcedom demonstration,

15

S

e, a ——— acow
;{&kﬁg Farthquake response « magniftied A0 timps

packet datae

bz
SO IR WA XS Ver e AL

2% e

emeto (cardinal): rasponse [Vinked])

CSAL Command Window

Sixth story horl2ontal dicplacrannt

Displacement

{seconds)

Cardinal):
S DG T b O3 SRS

Second stnr

754CSALY> list 3300, 3320

3301 tnteger node, stegs:
3 3302 ¢

3303 integer §:

4 3304
3305 o (4 = l.steps) (
3306 anlnate_packet{!),x{node)
3307 animate_packet({}.ylnade)
3308 animate.packet{{}.tlnodel

b

54 3312 votid Antmate_Trame(id, steps)
3313 Frane td:
Y 3314 integer steps:

3315 ¢«

3316
3317
38
339

3320
CSAL)

Cet_Displacement_Data(2.steps
Get_Displacement_Data(6.steps

Bulld_Packet(steps);
Bulld_Plot_ Data(steps):

3300 void Scale_History_Datai(node.s.eps)

= aninate.packet{1i),x{node) » MAG.X:
animate_packet(1),ylnodel » MAG.Y:
antmate_packet(1),tinodel » 10:

1
LH

gR'onlinear Jime Hxstor Analys:s of a Brared frane
b K et T Tos 35 5ore eA X 3 TR SR AR ATAE Y e ko s K0T TTOEE

SISt ey - e ey

Figure 7: Nonlincar response of a braced frame.

+ This covironment supports computer network
operations. In particular, tasks may be cxported to dif-
ferent computers across a local arca network on a
procedure basis. In addition to providing a fall back
mechanism if remote resources arc not available, the
system will automatically convert data to and from a
computer independent representation,

A virtual machinc makes the system casicr to
move to new computers and operating systems by lo-
calizing the arcas where changes need to be made. The
virtual machine provides a level of abstraction above
the actual workstation hardware and software, and it
helps to make the various system interfaces much more
uniform,

+ By allowing objccts to be bound to the system at
run time, this computer environment can efficiently run
on today's engincering workstations. Dynamic binding
not only makes the | as¢ system much smaller, but it
also allows library routines to be developed asynchro-
nously.

16

+ The programming environment is comprised of
several layers of implementation. Only a small collec-
tion of utilities makes up the basic system, all other
items may be optionally added if they are required by
an implementation,

+ This systcm provides a callable interface to a
structural support library. A collection of routines in
this library, along with a named work space, allows an
engineer to flexibly tailor how a given engineering
model might be represented. Furthermore, since algo-
rithms can also be described at the command inter-
preter level, there is no longer a division between a
finitc element model and the operations performed on
it. Hence, for example, new techniques such as adap-
tive h and p order mesh refinement may be more
readily implemented.

+ The set of application libraries can be used to
take advantage of the large body of existing computer
code. For example, the system has the capability to
communicate with large finitc element codes and a set
of standard mathematical libraries.

This programming environment for structural en-
gineering applications can offer a great deal of support
to the users. Because the system is primarily interac-
tive, the engineer can examine and modify data and
algorithms quite easily. By taking advantage of several
emerging standards for computer interaction, graphics
and networking, this programming environment can be
constructed with today's technology.,

7 ACKNOWLEDGMENT

Supervision and guidance of this study were pro-
vided by Professor R. L. Taylor, University of Califor-
nia, Berkeley.

8 REFERENCES

[1] Ada Joint Program Office (1983) Reference Man-
ual for the Ada Programming Language, ANSUMili-
tary Standard MIL-STD-1815A, Washington, D.C.;
United States Department of Defense.,

[2] Aho, A.V.; Scthi, R.; Uliman, J.D. (1986) Compil-
ers, Principles, Techniques and Tools, Reading, Mass.;
Addison-Wesley.

[3] ANS X3.9 (1978) American National Standard
Programming Language Fortran, New York; Ameri-
can National Standards Institute.

[4] ANS X3.9-198x (1987) Draft Proposed Revised
American National Standard Programming Language
Fortran, New York; American National Standards In-
stitute,

[S] ANS X3H3/85-21 (1985) Draft American National
Standard for the Functional Specification of the Pro-
grammer's Hierarchical Interactive Graphics System
(PHIGS), New York; American National Standards
Institute.

[6] Birmecll, A.D.; Nelson, B.J. (1984) Implementing
Remote Procedure Calls, ACM Transactions on Com-
puter Systems, 2.1, 39-59.

[7] DeSalvo, G.J.; Swanson, J.A. (1985) ANSYS User's
Manual, Houston, Pa.; Swanson Analysis Systems, Inc,

[8] Dongarra, J.J.; Moler, C.B; Bunch, J.R.; Stewart,
G.W. (1979) LIN-PACK User's Guide, Philadelphia,
P.A.; SIAM.

17

[9] Goldberg, A.; Robson, D. (1983) Smalltalk-80: The
Language and Its Implementations, Reading Mass.;
Addison-Wesley.

[10] IMSL, Inc; (1982) IMSL Library Reference Guide,
Edition 9, Houston, Texas; IMSL, Inc.

[11] Institute of Electrical and Electronics Engineers
(1987) Guide to POSIX Based Open System Architec-
ture, Washington, DC; IEEE Computer Standards Sec-
retariat.

[12] International Standards Organization (1981) Gra-
phical Kernel System (GKS), Version 6.6.

[13] Kemighan, B.W. and Pike, R. (1984) The Unix
Programming Environment, Englewood Cliffs, NJ; Pren-
tice Hall.

[14] Landers, J.A.; Austin, M.A.; Taylor, R.L.; Pister,
K.S(1986) A Programming Environment for Structural
Engineering Computations, Proceedings of the First
World Conference on Computational Mechanics, Austin,
Texas.

(15] Landers, J.A. (to appear) PGF: A Postprocessor
Jfor generated Fortran, Engineering with Computers.

[16) Landers, J.A. (1982) SDMS: The Structural Data
Management System, Chicago, Ill.; Skidmore, Owings
and Merrill.

[17} Logcher, R.D. (1967) ICES STRUDL-I The Struc-
tural Design Language, Cambridge Mass.; MIT De-
partment of Civil Enginecring.

(18] Lopez, L.A. (1972) POLO: Problem-Oriented
Language Organizer, Computers and Structurcs, 2.4,
555-572.

[19] MacNeal, R.H.; McComick, C.W, (1971), The
NASTRAN Computer Program for Structural Analysis,
Computcrs and Structures, 1.3, 389-412,

[20] Maguire, G.Q; Smith, J.M. (1988) Process Migra-
tion: Effects on Scientific Computation, SIGPLAN
Notices, 23.3, 102-106.

{21] MATHLAB Group (1977) MACSYMA Reference
Manual, Version Ten, Cambridge, Mass.; MIT Labora-
tory for Computer Science.

[22]) McDonnell Douglas Automation Company (1974)
ICES STRUDL Improvements User's Manual, Techni-
cal Note M1090043.

[23] Moler, C. (1982) MATLAB User's Guide, Depart-
ment of Computer Science, University of New Mex-
ico.

[24} Parisi, M.A.; Rehak, D.R. (1986) General Pur-
pose Software for Probability Computations - A Vir-
tual Machine Approach, Engineering with Computers.
1.3,61-173.

[25] PDA Engincering, PATRAN User's Guide: Vol-
umes 1-2, Santa Ana, CA; PDA Engineering.

[26] Reps, T.W. (1984) Generating Language-Based
Environmenis, Cambridge, Mass.; MIT Press.

(271 Sandberg, R. (1985) Design and Implementation
of the Sun Network Filesystem, Proceedings of the
Usenix 1985 Summer Conference, 119-130.

[28} Scheifler, R.; Gettys, J. (1986) The X Window
System, LCS Memo LCS-TM-368, Cambridge Mass.:
MIT Laboratory for Computer Science.

29] Schreiner, A.T.; Friedman, H.G. (1985) Introduc-
tion to Compiler Construction with UNIX, Englewood
Cliffs, NJ; Prentice Hall,

18

[30] Smith, B.T.; Boyle, J.M.; Dongarra, J.J.; Garbow,
B.S.; Ikebe, Y.; Klema, V.C.; Moler; C.B. (1976) Ma-
trix Eigensystem Routines - EIS-PACK Guide, New
York; Springer-Verlang Lecture Notes in Computer
Science.

[31] SOFTECH Microsystems (1980) UCSD Pascal
User's Manual, San Diego, CA.

{32] SRI Intemational (1985) 1985 DDN Protocol
Handbook, Menlo Park, CA; DDN Network Informa-
tion Center.

[33] Taylor, R.L. (1977) Computer Procedures for
Finite Element Analysis, in The Finite Element Method
by O.C. Zienkiewicz, London; McGraw-Hill.

[34] Wilensky, R. (1984) LISPcraft, New York; W. W,
Norton,

[35] Wilson, E.L. (1979) CAL 78 User Information
Manual, SESM Report Number 79-1, University of
California, Berkeley; Department of Civil Engineering

[36] Wilson, E.L. (1970) A General Structural Analy-
sis Program (SAP), SESM Report Number 70-20, Uni-
versity of California, Berkeley; Department of Civil
Engineering.

(37) Wirth, N, (1976) Algorithms + Data Structures =
Programs, Englewood Cliffs, NJ; Prentice Hall.

DISTRIBUTION LIST

AFESC TIC (library), Tyndall AFB, FI

ARMY CECOM R&D Tech Lib, Ft Monmouth, NJ

ARMY BELVOIR R&D CEN STRBE-IB, Ft Belvoir, VA

ARMY CERL Library, Champaign, IL

ARMY ENGR DIST Library, Seattle, WA; Phila, Lib. Philadelphia, PA

ARMY EWES Library, Vicksburg MS

ARMY LMC Fort Lee, VA

ARMY MMRC DRXMR-SM (Lenoe)., Watertown, MA

ASST SECRETARY OF THE NAVY RE&S. Washington. DC

CBC Tech Library, Gulfport, MS

CBU 403, OIC, Annapolis, MD

CNA Tech Library, Alexandria, VA

COMDT COGARD Library, Washington. DC

DIA DB-6EI, Washington, DC

DIRSSP Tech Lib, Washington, DC

DNA Tech Sves Lib, Mercury, NV

DOD Explos Safety Brd (Lib), Washington, DC

DOE Knolls Atomic Pwr Lab, Lib, Schenectady. NY: Wind/Ocean Tech Div, Tobacco. MD

DTIC Alexandria, VA

GIDEP OIC, Corona, CA

GSA Ch Engrz Br, PQB, Washington. DC

LIBRARY OF CONGRESS Sci & Tech Div, Washington. DC

NAVCOASTSYSCEN Tech Library, Panama City, FL

NAVCOMMSTA Library, Diego Garcia

NAVEODTECHCEN Tech Library, Indian Head, MD

NAVFACENGCOM Code 09M124 (Lib). Alexandria, VA

NAVFACENGCOM - CHES DIV. FPO-1PL, Washington, DC

NAVFACENGCOM - NORTH DIV. Code 04AL. Philadelphia. PA

NAVFACENGCOM - PAC DIV. Library, Pearl Harbor. HI

NAVFACENGCOM - SOUTH DIV. Library. Charleston, SC

NAVFACENGCOM - WEST DIV. Code 04A2.2 (Lib). San Bruno. CA

NAVOCEANSYSCEN Code 9642B. San Diego. CA

NAVPGSCOL Code 69 (T. Sarpkaya). Monterey CA

NAVSCOLCECOFF Code C35. Port Hucneme, CA

NAVSHIPREPFAC Library, Guam

NAVSHIPYD Code 202.5 (Library)., Bremerton, WA: Library. Portsmouth, NH

NAVWARCOL Code 24, Newport. Rl

NRL Code 4670 (B. Faraday), Washington. DC

NTIS Lehmann, Springficld, VA

NUSC DET Lib (Code 4533), Newport, RI

OCNR Code 1113, Arlington. VA

OFFICE OF SECRETARY OF DEFENSE DDR&E. Waushington, DC

PMTC Code 1018, Point Mugu, CA

PWC Code 123C. San Diego, CA: Library (Code 134). Pearl Harbor, HI: Lik ry. Guam, Mariana Islands;
Library, Norfolk, VA; Library, Pensacola. FL: Library. Yokosuka. Japan: Tech Library. Subic Bay. RP

SUPSHIP Tech Library, Newport News, VA

US GOVT PRINTING OFFC Library Prgms Sves, SLLC. Washington, DC; Supt Docs, SLLA, Washington, DC

USNA Ch, Mech Engrg Dept, Annapolis, MD: Ocean Engrg Dept (McCormick). Annapolis. MD

CALIFORNIA STATE UNIVERSITY C.V. Chelapati, Long Beach, CA

CASE WESTERN RESERVE UNIV CE Dept (Perdikaris), Cleveland, OH

CATHOLIC UNIV of Am, CE Dept (Kim). Washington. DC

CITY OF LIVERMORE Dackins, PE, Livermore. CA

CLARKSON COLL OF TECH CE Dept (Batson). Potsdam. NY

COLORADO STATE UNIVERSITY CE Dept (Criswell). Ft Collins, CO

CORNELL UNIVERSITY Civil & Environ Engrg (Dr. Kulhawy), Ithuca. NY: Library, lthaca, NY

DAMES & MOORE Library, Los Angeles, CA

FLORIDA ATLANTIC UNIVERSITY Ocean Engrg Dept (Martin), Boca Raton, FL: Ocean Engrg Dept (Su).
Boca Raton, FL

FLORIDA INST OF TECH CE Dept (Kalajian), Melbourne, FL

GEORGE WASHINGTON UNIV Engrg & App Sci Scol (Fox), Washington. DC

GEORGIA INSTITUTE OF TECHNOLOGY CE Scol {Kahn). Atlunta, GA: CE Scol (Swanger). Atlanta, GA;
CE Scol (Zuruck), Atlanta, GA

INSTITUTE OF MARINE SCIENCES Library. Port Aransas, TX

JOHNS HOPKINS UNIV CE Dept (Jones), Baltimore, MD

LAWRENCE LIVERMORE NATL LAB FJ Tokarz, Livermore. CA: Plant Engrg Lib (L-654). Livermore. CA

Sk Bl L2 e

LEHIGH UNIVERSITY Linderman Library. Bethlchem. PA

LONG BEACH PORT Engrg Dir (Allen). Long Beach. CA

MICHIGAN TECH UNIVERSITY CE Dept (Haas). Houghton. MI

MIT Engrg Lib, Cambridge, MA: Lib, Tech Reports, Cambridge. MA

NATL ACADEMY OF SCIENCES NRC. Naval Studics Bd. Washington. DC

OKLAHOMA STATE UNIV Ext Dist Offc. Tech Transfer Cen. Ada OK

OREGON STATE UNIVERSITY CE Dept (Hicks). Corvallis. OR

PENNSYLVANIA STATE UNIVERSITY Gotolski. University Park. PA: Rsch Lab (Snyder). State College.
PA

PORTLAND STATE UNIVERSITY Engrg Dept (Migliore). Portland. OR

PURDUE UNIVERSITY CE Scol (Chen). W. Lafayette. IN: CE Scol (Lconards). W. Lafayette. IN: Engrg
Lib, W. Lafayette. IN

SAN DIEGO STATE UNIV CE Dept (Krishnamoorthy). San Dicgo. CA

SEATTLE PORT W Ritchic, Seattle. WA

SEATTLE UNIVERSITY CE Dept (Schwaegler). Seattle, WA

SOUTHWEST RSCH INST Energetic Sys Dept (Esparza). San Antonio. TX: King. San Antonio. TX: M.
Polcyn. San Antonio, TX; Marchand. San Antonio. TX

STATE UNIVERSITY OF NEW YORK CE Dept (Reinhorn). Buffalo, NY: CE Dept, Buffalo, NY

TEXAS A&M UNIVERSITY CE Dept (Machemchl). College Station. TX: CE Dept (Niedzwecki). College
Station, TX: Occan Engr Proj. College Station. TX

UNIVERSITY OF CALIFORNIA CE Dept (Fenves). Berkeley. CA: CE Dept (Fourney). Los Angeles. CA:

CE Dept (Gerwick), Berkeley. CA: CE Dept (Polivka). Berkeley. CA: CE Dept (Williamson). Berkeley.
CA; Naval Archt Dept. Berkeley. CA

UNIVERSITY OF HARTFORD CE Dept (Keshawarz). West Hartford. CT

UNIVERSITY OF HAWAII CE Dept (Chiu). Honolulu. HI: Manoa. Library, Honolulu, HI: Occan Engrg
Dept (Ertekin), Honolulu, HI

UNIVERSITY OF ILLINOIS Library. Urbana. IL: Metz Ref Rm. Urbana. IL

UNIVERSITY OF MICHIGAN CE Dept (Richart). Ann Arbor. Ml

UNIVERSITY OF MISSOURI Military Sci Dept. Rolla. MO

UNIVERSITY OF NEBRASKA Pofar Ice Coring Office. Lincoln. NE

UNIVERSITY OF NEW MEXICO HL Schreyer. Albuquerque. NM: NMERI (Bean), Albuquerque. NM:
NMERI (Falk). Albuquerque. NM: NMERI (Leigh). Albuguerque. NM

UNIVERSITY OF PENNSYLVANIA Dept of Arch (P. McCleary). Philadelphia, PA

UNIVERSITY OF RHODE ISLAND CE Dept (Kovacs). Kingston. Rl: CE Dept. Kingston, Rl

UNIVERSITY OF TEXAS CE Dept (Thompson). Austin, TX: Construction Industry Inst. Austin. TX: ECJ
4.8 (Breen). Austin, TX: Fusion Studies Inst (Kotschenrcuther). Austin, TX

UNIVERSITY OF WASHINGTON CE Dept (Hartz), Scattle. WA: CE Dept (Mattock). Scattle, WA

UNIVERSITY OF WISCONSIN Great Lakes Studies Cen. Milwaukee. WI

WASHINGTON OES/PHS/DDHS (Ishihara). Scattle. WA

ADVANCED TECHNOLOGY. INC Ops Cen Mgr (Bednar)., Camarillo, CA

AMERICAN CONCRETE INSTITUTE Library. Detroit. M{

ARCHITECTURAL STUDIO 3 M Mrvos. Long Beach, CA

ARVID GRANT & ASSOC Olympia. WA

ATLANTIC RICHFIELD CO RE Smith, Dallas, TX

BATTELLE D Frink. Columbus. OH

BECHTEL CIVIL, INC K. Mark, San Francisco. CA: Woolston. San Francisco, CA

BETHLEHEM STEEL CO Engrg Dept (Dismuke), Bethlehem, PA

BRITISH EMBASSY Sci & Tech Dept (Wilkins), Washington, DC

BROWN & ROOT Ward, Houston, TX

CHEVRON OIL FLD RSCH CO Strickland, La Habra, CA

CHILDS ENGRG CORP K.M. Childs. Jr, Medficld, MA

CLARENCE R JONES. CONSULTN, LTD Augusta, GA

COLLINS ENGRG, INC M Garlich, Chicago. IL

CONRAD ASSOC Luisoni, Van Nuys, CA

CONSOER TOWNSEND & ASSOC Schramm, Chicago. IL

CONSTRUCTION TECH LABS. INC G. Corley, Skokie. IL

CURTIS ENGRG CORP DH Curtis. National City, CA

DAVY DRAVO Wright, Pittsburg, PA

DILLINGHAM CONSTR CORP (HD&C). F McHale, Honolulu, HI1

EARL & WRIGHT CONSULTING ENGRGS Jensen, San Francisco. CA

EVALUATION ASSOC, INC MA Fedele, King of Prussia, PA

GRIDCO Ong Yam Chai, Singapore

GRUMMAN AEROSPACE CORP Tech Info Cir. Bethpage. NY

GULF COAST RSCH LAB Library. Ocean Sorines. MS

ADINA ENGRG, INC / Walczak, Watertown, MA
AFOSR / NA (LT COL L.D. Hokanson), HWashington, DC
APPLIED RSCH ASSOC, INC / Higgins, Albuquerque, NM

ARMSTRONG AERO MED RSCH LAB / Ovenshire, Wright-Patterson AFB, OH

ARMY CORPS OF ENGRS / HQ, DAEN-ECE-D (Paavola), HWashington, DC
ARMY EWES / HES (Norman), Vicksburg, MS

ARMY EWES / WES (Peters), Vicksburg, MS

ARMY EWES / WESIM-C (N. Radhadrishnan), Vicksburg, MS
CATHOLIC UNIV / CE Dept (Kim) Washington, DC

CENTRIC Engineering Systems, Inc / Taylor, Palo Alto, CA
DOT / Transp Sys Cen (Tong}, Cambridge, MA

DTIC / Alexandria, VA

DTRCEN / (Code 1720), Bethesda, MD

GEN MOTORS RSCH LABS / (Khalil}, Warren, MIX

GEORGIA INST OF TECH / Mech Engrg (Fulton), Atlanta, GA

HQ AFESC / RDC (Dr. M. Katona), Tyndall AFB, FL

LOCKHEED / Rsch Lab (B. Nour-Omid), Palo Alto, CA

LOCKHEED / Rsch Lab (M. Jacoby), Palo Alto, CA

LOCKHEED / Rsch Lab (P. Underwood), Palo Alto, CA

LOCKHEED / Rsch Lab (S. Nour-Omid}, Palo Alto, CA

MARC ANALYSIS RSCH CORP / Hsu, Palo Alto, CA

MEDWADOWSKY, S. J. / Consult Struct Engr, San Francisco, CA
NAVFACENGCOM / Code 04B2 (3. Cecilio), Alexandria, VA
NAVFACENGCOM / Code O04BE (Wu), Alexandria, VA

NORTHWESTERN UNIV / CE Dept (Belytschko), Evanston, IL

NRL / Code 4430, Hashington, DC

NSF / Struc & Bldg Systems (KP Chang)}, Washington, DC

NUSC DET / Code 44 (Carlsen), New London, CT

OCNR / Code 10P4 (Kostoff), Arlington, VA

OCNR / Code 1121 (EA Silva), Arlington, VA

OCNR / Code 1132SM, Arlington, VA

OHIO STATE UNIV / CE Dept (Sierakowsici), Columbus, OH
OREGON STATE UNIV / CE Dept (Hudspeth}, Corvallis, OR
OREGON STATE UNIV / CE Dept (Leonard), Corvallis, OR

OREGON STATE UNIV / CE Dept (Yim), Corvallis, OR

OREGON STATE UNIV / Dept of Mech Engrg (Smith), Corvallis, OR
PORTLAND STATE UNIV / Engrg Dept (Migliori), Portland, OR
SRI INTL / Engrg Mech Dept (Grant), Menlo Park, CA

SRI INTL / Engrg Mech Dept (Simons), Menlo Park, CA
STANFORD UNIV / App Mech Div (Hughes), Stanford, CA
STANFORD UN1IV / CE Dept (Pensky), Stanford, CA

STANFORD UNIV / Div of App Mech (Simo), Stanford, CA

TRW INC / Crawford, Redondo Beach, CA

TRW INC / Dr. N. Carpenter, San Bernardino, CA

UNIV OF CALIFORNIA / CE Dept (Herrmann), Davis, CA

UNIV OF CALIFORNIA / CE Dept (Kutter), Davis, CA

UNIV OF CALYFORNIA / CE Dept (Romstad), Davis, CA

UNIV OF CALIFORNIA / CE Dept (Shen), Davis, CA

UNIV OF CALIFORNIA / CE Dept (Wilson), Berkeley, CA

UNIV OF CALIFORNIA / Ctr for Geotech Model (Idriss), Davis, CA
UNIV OF CALIFORNIA / Geotech Model Cen {(Cheney), Davis, CA
UNIV OF CALIFORNIA / Mech Engrg Dept (Bayo), Santa Barbara, CA

St 4 emd o A i

A

HALEY & ALDRICH, INC. T.C. Dunn, Cambridge, MA

HAYNES & ASSOC H. Haynes, PE, Oakland, CA

HIRSCH & CO L Hirsch, San Diego, CA

HJ DEGENKOLB ASSOC W Murdough, San Francisco, CA

HOPE ARCHTS & ENGRS San Diego, CA

HUGHES AIRCRAFT CO Tech Doc Cen, El Segundo, CA

INTL MARITIME, INC D Walsh, San Pedro, CA

IRE-ITTD Input Proc Dir (R. Danford), Eagan, MN

JOHN J MC MULLEN ASSOC Library, New York. NY

LEO A DALY CO Honolulu, HI

LIN OFFSHORE ENGRG P. Chow, San Francisco CA

LINDA HALL LIBRARY Doc Dept, Kansas City. MO

MARATHON OIL CO Gamble, Houston, TX

MARITECH ENGRG Donoghue, Austin, TX

MC CLELLAND ENGRS, INC Library, Houston, TX

MOBIL R&D CORP Offshore Engrg Lib, Dallas, TX

MT DAVISSON CE, Savoy, IL

EDWARD K NODA & ASSOC Honolulu, HI

NEW ZEALAND NZ Concrete Rsch Assoc, Library, Porirua

NORTHWEST ENGRG CO Grimm, Bellevue, WA

NUHN & ASSOC A.C. Nuhn, Wayzata, NM

PACIFIC MARINE TECH (M. Wagner) Duvall, WA

PILE BUCK, INC Smoot, Jupiter, FL

PMB ENGRG Coull, San Francisco, CA

PORTLAND CEMENT ASSOC AE Fiorato. Skokic. IL

PRESNELL ASSOC, INC DG Presnell, Jr. Louisville, KY

SANDIA LABS Library, Livermore, CA

SARGENT & HERKES, INC JP Pierce, Jr. New Otleans. LA

SAUDI ARABIA King Saud Univ. Rsch Cen, Riyadh

SEATECH CORP Peroni, Miami, FL

SHELL OIL CO E Doyle, Houston, TX

SIMPSON, GUMPERTZ & HEGER. INC E Hill, CE, Arlington. MA

3M CO Tech Lib, St. Paul, MN

TRW INC Crawford, Redondo Beach, CA; Dai. San Bernardino, CA: Engr Library, Cleveland, OH: Rodgers,
Redondo Beach, CA

TUDOR ENGRG CO Ellegood, Phoenix, AZ

VSE Ocean Engrg Gp (Murton), Alexandria. VA

VULCAN IRON WORKS, INC DC Warrington, Cleveland, TN

WESTINGHOUSE ELECTRIC CORP Library, Pittsburg. PA

WISS, JANNEY, ELSTNER, & ASSOC DW Pfeifer, Northbrook, IL

WISWELL, INC G.C. Wiswell, Southport, SC

WOODWARD-CLYDE CONSULTANTS West Reg. Lib, Oakland, CA

BROWN, ROBERT University, AL

BULLOCK, TE La Canada, CA

CHAO, JC Houston, TX

CLARK, T. Redding, CA

CURTIS, C. Ventura, CA

DOBROWOLSKI, JA Altadena, CA

GIORDANO, A.J. Sewell, NJ

HARDY, S.P. San Ramon, CA

HAYNES, B. No. Stonington, CT

HEUZE, F Alamo, CA

KOSANOWSKY, § Pond Eddy, NY

NIEDORODA, AW Gainesville, FL

PETERSEN, CAPT N.W. Pleasanton, CA

QUIRK, J Panama City, FL

SMELSER, D Sevierville, TN

SPIELVOGEL, L Wyncote, PA

STEVENS, TW Dayton, OH

VAN ALLEN, B Kingston, NY

|V

UNIV
UNIV
UNIV
UNIV
UNIV
UNIV
UNIV
UNIV
UNIV
UNIV
UNIV
UNIV
UNIV
UNIV

OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF
OF

CALIFORNIA / Mech Engrg Dept (Bruch), Santa Barbara, CA
CALIFORNIA / Mech Engrg Dept (Leckie), Santa Barbara, CA
CALIFOENIX / Mech Engrg Dept (McMeeking), Santa Barbara, CA
CALIFOKNIA / Mech Engrg Dept (Mitchell), Santa Barbara, CA
CALIFORNIA / Mech Engrg Dept (Tulin), Santa Barbara, CA
COLORADO / CE Dept (Hon-Yim Ko), Boulder, CO

COLORADO / Mech Engrg Dept (Fellipe), Boulder, CO
COLORADO / Mech Engrg Dept (Park), Boulder, CO

ILLINOIS / CE Lab (Abrams), Urbana, IL

ILLINOIS / CE Lab {Pecknold), Urbana, IL

N CAROLINA / CE Dept (Gupta), Raleigh, NC

N CAROLINA / CE Dept (Tung), Raleigh, NC

TEXAS / CE Dept (Stokoe), Austin, TX

WYOMING / Civil Engrg Dept, Laramie, WY

WEBSTER, R / Brigham City, UT
WEIDLINGER ASSOC / F.S. HWong, Los Altos, CA

tadaiaaam

